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ABSTRACT

Forecasts of high-impact weather conditions using convection-allowing numerical weather prediction

models have been found to be highly sensitive to the selection of cloud microphysics scheme used within the

system. The Warn-on-Forecast (WoF) project has developed a rapid-cycling, convection-allowing, data as-

similation and forecasting system known as the NSSL Experimental WoF System for ensembles (NEWS-e),

which is designed to utilize advanced cloud microphysics schemes. NEWS-e currently (2017–18) uses the

double-moment NSSL variable density scheme (NVD), which has been shown to generate realistic repre-

sentations of convective precipitation within the system. However, very little verification on nonprecipitating

cloud features has been performed with this system. During the 2017 Hazardous Weather Testbed (HWT)

experiment, an overestimation of the areal coverage of convectively generated cirrus clouds was observed.

Changing the cloud microphysics scheme to Thompson generated more accurate cloud fields. This research

undertook the task of improving the cloud analysis generated by NVD while maintaining its skill for other

variables such as reflectivity. Adjustments to cloud condensation nuclei (CCN), fall speed, and collection

efficiencies were made and tested over a set of six severe weather cases occurring during May 2017. This

research uses an object-based verification approach in which objects of cold infrared brightness temperatures,

high cloud-top pressures, and cloud water path are generated from model output and compared against

GOES-13 observations. Results show that the modified NVD scheme generated much more skillful forecasts

of cloud objects than the original formulation without having a negative impact on the skill of simulated

composite reflectivity forecasts.

1. Introduction

Synthetic satellite imagery has been used to visualize

and verify numerical weather prediction (NWP) model

output for over two decades. In particular, a substantial

amount of research has focused on simulated geosta-

tionary imager water vapor and infrared radiances to

track cloud coverage, determine convective initiation,

and relate cloud properties to potential high-impact

weather events (e.g., Chevallier et al. 2001; Chevallier

and Kelly 2002; Grasso and Greenwald 2004; Chaboureau

and Pinty 2006; Mecikalski and Bedka 2006; Grasso et al.

2008; Cintineo et al. 2013, 2014; Griffin et al. 2017a,b).
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Simulated satellite radiances are calculated by ingesting

forecast model atmospheric and surface conditions into a

radiative transfer model (RTM) that relates these condi-

tions to expected satellite observations based on satellite

sensor lookup tables generated for individual wavelengths

and fields of view (Weng 2007; Han et al. 2007). Using this

method, simulated satellite imagery has become an in-

dispensable tool in current forecasting environments and is

particularly useful during high-impact weather events (e.g.,

Line et al. 2016; Lindsey et al. 2018). For example, syn-

thetic infrared radiances can be used to assess the depth

and intensity of forecast convection by measuring the

temperature of cloud tops and where convection is de-

veloping prior to the onset of precipitation. Other infrared

radiances are sensitive to mid- and upper-level atmo-

spheric moisture and can be used to assess a modeled en-

vironment’s favorability for high-impact weather to occur

(Jones et al. 2018). The location and thickness of clouds

has a direct impact on solar radiation reaching the surface,

resulting in modification to the near-surface thermody-

namic conditions (e.g., Xie et al. 2012; Cintineo et al. 2014;

Jones et al. 2015). As a result, synthetic satellite imagery

can be used to determine where these impacts are likely to

be maximized.

In addition to being an important forecast tool, syn-

thetic satellite imagery has been used for model verifi-

cation (e.g., Tselioudis and Jakob 2002; Keil et al. 2003;

Otkin et al. 2009; Grasso et al. 2010; Matsui et al. 2014;

Griffin et al. 2017a,b). Additional studies focus on ver-

ification of cloud properties and how different cloud

model microphysics characterize them (Grasso and

Greenwald 2004; Liu and Moncrieff 2007; Chaboureau

and Pinty 2006; Otkin and Greenwald 2008; Grasso and

Lindsey 2011; Cintineo et al. 2014; Grasso et al. 2014).

Cloud microphysics schemes are included in NWP

models to represent the formation of, interaction be-

tween, and dissipation of liquid and frozen hydrome-

teors. Each scheme contains different assumptions on

the properties of cloud and precipitation hydrometeors,

which can be a significant source of model error (e.g.,

Snook and Xue 2008; Tong and Xue 2008). Single-

moment microphysics schemes only predict hydrome-

teor mixing ratios while more complex double-moment

schemes predict both mixing ratios and hydrometeor

number concentrations. Chaboureau and Pinty (2006)

and Liu and Moncrieff (2007) found that the choice of

cloud microphysics schemes had the greatest impact on

upper-tropospheric hydrometeor concentrations. Otkin

and Greenwald (2008) noted that the more complex

schemes generally produced superior representations

of cloud properties. Finally, Cintineo et al. (2014)

found that double-moment schemes such as Morrison

(Morrison et al. 2009) and Milbrandt–Yau (Milbrandt

and Yau 2005a,b) produced too much upper-level cloud

cover, whereas other schemes such as Thompson

(Thompson et al. 2004, 2008) andWRF double-moment

6-class (WDM6) produced more realistic representa-

tions. Matsui et al. (2014) combined microwave and in-

frared radiances from polar-orbiting satellite to further

classify observed clouds into convection, stratus, or anvil

types. However, since high temporal resolution micro-

wave radiances are not available, we are unable to verify

individual cloud types using those methods.

Verifying cloud microphysics schemes present within

convection-permitting models using satellite data com-

plements many studies using radar reflectivity (REFL)

for the same purpose. For example, Dawson et al. (2012),

Jung et al. (2012), andYussouf and Stensrud (2012) noted

that double-moment microphysics schemes generate a

better representation of reflectivity within the model

compared to single-moment schemes. This research ex-

tends these previous works by verifying several sets of

experiments using both radar reflectivity and satellite

imagery. In convection-permitting models, it is important

to get both the characteristics of severe-weather-producing

convection and the near-storm environment correct to

generate accurate short-term (0–3h) forecasts.

This research uses forecasts generated for high-impact

weather events occurring in May 2017 using an ensem-

ble data assimilation and forecasting system developed

as part of theWarn-on-Forecast project (WoF; Stensrud

et al. 2009; 2013), known as the NSSL Experimental

WoF System for ensembles (NEWS-e; Wheatley et al.

2015; Jones et al. 2016). This system was run during the

2017 Hazardous Weather Testbed (HWT) in real time

and used by forecasters to produce accurate short-term

outlooks of convective storm hazards (Gallo et al. 2017;

Choate et al. 2018). The 2017 version of the system used

the NSSL full double-moment microphysics scheme

(Mansell et al. 2010; Ziegler 1985) with variable-density

graupel and hail (NVD). Using this configuration, a

positive bias in the depth and coverage of cirrus cloud

emanating from thunderstorm anvils was noted com-

pared to the 2016 version of this system, which used

Thompson microphysics (Thompson et al. 2004, 2008,

2016). To assess the impact of different microphysics

on this system in a quantitative manner, six 2017 cases

(9, 16, 17, 18, 23, and 27May) were rerun using Thompson

cloud microphysics and a modified NSSL double-

moment scheme in order to reduce forecast biases re-

lated to cloudiness for future versions of the NEWS-e

system. An object-based verification system (Skinner

et al. 2016; 2018), based on theMethod for Object Based

Diagnostic Evaluation (MODE; Davis et al. 2006a,b), is

used to identify both radar reflectivity and satellite-

imagery-based objects to compare the various model

1682 WEATHER AND FORECAST ING VOLUME 33

D
ow

nloaded from
 http://journals.am

etsoc.org/w
af/article-pdf/33/6/1681/4667790/w

af-d-18-0112_1.pdf by N
O

AA C
entral Library user on 11 August 2020



configurations. Each event considered was associated

with multiple severe weather reports occurring during

the late afternoon and evening within the region domain

of each case.

Section 2 of this paper describes the NEWS-e system,

microphysics schemes, and synthetic satellite products.

Section 3 provides a description of the object verifica-

tion methods and definitions on how radar reflectivity

and satellite objects are defined. Results of the compari-

son of microphysics schemes are provided in section 4

with concluding remarks are presented in section 5.

2. Model configuration

a. 2017 Warn-on-Forecast system

A complete description of the NEWS-e system is

provided in Wheatley et al. (2015), Jones et al. (2016),

and Skinner et al. (2018) and is briefly summarized here.

The configuration used for these experiments reflects

the one used for HWT operational testing during the

spring of 2017. The NEWS-e used the Advanced Re-

search version of theWeather Research and Forecasting

Model (WRF-ARW), version 3.8.1 (Skamarock et al. 2008).

The data assimilation method is the parallel ensemble

adjustment Kalman filter present in the Data Assimila-

tion Research Testbed (DART) software (Anderson and

Collins 2007; Anderson et al. 2009). Surface, radar, and

satellite observations are assimilated into a 36-member

ensemble at 15-min intervals starting at 1800 UTC each

day and ending at 0300 UTC the next day. An experi-

mental 36-member High Resolution Rapid Refresh en-

semble (HRRRE)provides initial and boundary conditions

for the 2017 version of the NEWS-e (Benjamin et al. 2016;

Alexander et al. 2018). Both the HRRRE and NEWS-e

systems use a 3-km horizontal grid spacing with 51 ver-

tical levels and a model top at 20 hPa. The NEWS-e

domain is 250 3 250 grid points or approximately

750km3 750 km and is centered on the area of expected

severe weather for each day. To maintain ensemble

spread, each member uses a different set of boundary

layer and radiation schemes (e.g., Stensrud et al. 2000;

see Table 2 in Wheatley et al. 2015). One change from

2016 to 2017 was to replace the Thompson cloud mi-

crophysics scheme used in all members, with the NSSL

double-moment scheme to potentially reduce over-

forecast biases observed in simulated reflectivity during

the 2016 experiment (Skinner et al. 2018). This model

configuration, while not perfect, has proven very suc-

cessful during real-time testing and has been used in

operational tornado and flash-flooding warning guidance.

Additional improvements to the model configuration such

as increased resolution and additional development in

microphysics will be applied to future versions of

this system.

Assimilated conventional observations include surface

temperature, humidity, wind, and pressure measurements

from available Automated Surface Observing System

(ASOS) sites and, if available, Oklahoma Mesonet sites

within the NEWS-e domain. WSR-88D reflectivity con-

tainedwithin the 1-kmMulti-RadarMulti-Sensor (MRMS)

products and are objectively analyzed to 5-km resolu-

tion using a Cressman interpolation scheme (Cressman

1959; Smith et al. 2016). Radial velocity is processed

directly from the level-II WSR-88D data, dealiased, and

also objectively analyzed to a 5-km resolution using the

same Cressman scheme. Satellite data in the form of cloud

water path (CWP) retrievals from the Geostationary Op-

erational Environmental Satellite-13 (GOES-13) imager

data are also assimilated during daytime hours (Minnis

et al. 2011; Jones et al. 2015). Both radar reflectivity and

CWP are assimilated using previously developed for-

ward operators that convert the model state hydrome-

teor variables into simulated reflectivity and CWP for

comparison with observations (e.g., Yussouf et al. 2013;

Jones et al. 2015). Assimilation of these data provides

the initial conditions of the convective features and the

near-storm environment within the model analysis.

Three sets of experiments are conducted for each

case. One uses the radiation and aerosol-aware version

of the Thompson scheme (THOMP), the second uses

the real-time configuration NVD cloud microphysics

(NVD-RLT), and the third uses a modified NVD

double-moment scheme (NVD-MOD). Details of the

modifications are provided in the following section.

Otherwise, all experiments use an identical configura-

tion. For all experiments, 3-h forecasts from the first 18

ensemble members are initiated at hourly intervals from

2000 to 0200 UTC. Additional 90-min forecasts are ini-

tiated on the half hour beginning at 2030 UTC and

ending at 0230 UTC. Forecasts from only the first 18

members are used to reduce computing overhead.

Testing has shown that probability statistics do not differ

significantly when calculated from 18- or 36-member

forecast sets. This forecast configuration mimics the one

used during real-time testing in 2017 and 2018.

b. Cloud microphysics schemes

Analysis and prediction of convection within convection-

permitting NWP models generally relies on the in-

clusion of bulk cloud microphysics schemes to represent

clouds and precipitation. These schemes characterize

hydrometeors in terms of integrated moments of an as-

sumed (usually gamma) size distribution function. Single-

moment schemes typically calculate the total mass (mixing

ratio), whereas two-moment schemes usually add the total
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number concentration, such that the mean hydrometeor

diameter is now predicted. Single-moment schemes gen-

erally diagnose total concentration (and mean size) by

assuming a constant or diagnosed (e.g., temperature de-

pendent) value of the distribution intercept parameter.

The Thompson scheme contains elements of both

single- and double-moment configurations as it predicts

hydrometeor mass mixing ratios for cloud water, rain,

cloud ice, graupel, and snow, but number concentra-

tions for only cloud water, cloud rain, and cloud ice

(Thompson et al. 2004; 2008). The Thompson micro-

physics used here represents the latest version present in

the WRF 3.8.1 code distribution, which is radiation

aware [i.e., calculates effective radii; Rapid Radiative

Transfer Model for GCMs (RRTMG) scheme only] and

aerosol aware using monthly climatologies of aerosol

concentrations (Thompson and Eidhammer 2014;

Thompson et al. 2016). The Thompson scheme em-

ployed here also uses the updated number concentration

assumptions described by Brown et al. (2016, 2017) to

calculate synthetic reflectivity fields. The other scheme

used in this research is the NVD scheme, which is a full

double-moment scheme and has separate graupel and

hail species (Mansell et al. 2010; Ziegler 1985). The

NSSL scheme used here is also linked to the RRTMG

radiation scheme and uses an initial uniform cloud

condensation nuclei (CCN) concentration rather than

an aerosol climatology.

Two configurations of the NVD scheme were tested.

The first was the same as that used for the 2017 HWT

experiment (NVD-RLT). For the second (NVD-MOD),

several microphysics parameters were changed to

reduce the positive upper-tropospheric cloud bias

observed during real-time testing without negatively

impacting reflectivity scores. First, the CCN was re-

duced from 2.03 109 to 1.03 109m23, the latter being

the default value (Table 1). Second, the ice hydrometeor

fall speed was switched from the default formulation

(49 420D1.415; Straka and Mansell 2005) to 42.30D0.55,

which was adapted from Ferrier (1994) and where D is

the diameter of the hydrometeor. The lower exponent

increases the fall speeds for smaller diameter hydro-

meteors (D , 270mm), which includes most anvil-level

ice crystals. Third, ice and snow hydrometeor fall speeds

were increased using scaling factors of 50% and 25%

respectively. These changes allow these hydrometeors

to fall faster out of the upper-level atmosphere. Finally,

maximum graupel and hail-droplet collection efficien-

cies were boosted from 0.5 and 0.75, respectively, to 0.9,

which results in more cloud droplets being scavenged,

decreasing the number of frozen droplets in the anvil.

These changes act to reduce the total mass and number

of snow and ice hydrometeors in the upper troposphere

while also increasing their fall speed. The modifications

to NVD used in this research were based on several

sensitivity studies utilizing idealized deterministic ex-

periments. Further sensitivity studies on multiple real-

data cases could not be performed owing to resource

constraints and the need to have an improved NVD

scheme for cloud analysis in time for summer 2018 real-

time experiments. Still, these modifications represent a

first step in creating optimal cloud analyses in the NVD

scheme, and further optimization tests are likely to oc-

cur to prepare for 2019 testing and beyond.

c. Synthetic satellite products

Synthetic satellite brightness temperature and cloud

property retrievals are calculated from WRF Model

output using the NCEP Unified Post Processing (UPP)

system, version 3.1. The UPP contains the Community

Radiative Transfer Model (CRTM) that converts the

clear- and cloudy-sky-modeled atmospheric state into

brightness temperatures for a given satellite sensor and

wavelength (Weng 2007; Han et al. 2007). For this re-

search, simulated GOES-13 infrared (10.7mm) bands

are simulated. The UPP code was updated to calculate

hydrometeor effective radii required in the cloudy portion

of the simulation using formulas specific to each micro-

physics scheme. Synthetic cloud property retrievals such as

cloud-top pressure (CTP) andCWP are calculated directly

from the model state using the standard UPP definitions.

In the future, it may be possible to apply the retrieval al-

gorithms to the model output to generate fully consistent

model and observed retrieval products for comparison, but

this task is beyond the scope of this work.

d. Satellite-retrieved products

The cloud properties used for assimilation and veri-

fication were derived using the Satellite Cloud and Ra-

diation Property Retrieval System (SatCORPS; https://

satcorps.larc.nasa.gov; see Minnis et al. 2008a, 2016)

that is based on the algorithms described by Minnis

et al. (2011). The assimilated CWP is the value directly

computed from the product of the retrieved cloud

optical depth t and hydrometeor effective radius Re.

TABLE 1. Differences in NVD double-moment cloud micro-

physics parameters between the NVD-RLT and NVD-MOD

experiments.

Parameter NVD-RLT NVD-MOD

CCN 2.0 3 109 1.0 3 109

Fall speed scheme Straka and Mansell Ferrier

Ice fall speed factor 1.0 1.50

Snowfall speed factor 1.0 1.25

Graupel collection efficiency 0.5 0.9

Hail collection efficiency 0.75 0.9
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Optical depth is retrieved using the Visible Infrared

Solar-Infrared Technique (VISST), which computes ex-

pected spectral radiances for a range of cloud optical

depths and cloud effective radii. The expected spectral

radiances are compared with observations and itera-

tively solved to determine various cloud properties. The

cloud properties used for comparison are 10.7-mm

brightness temperatures (TB107), CWP, and CTP.

In the satellite retrievals, only one phase is assigned to

each pixel. Thus, even if an ice-over-water multilayer

cloud system or deep convective cloud with a liquid

bottom is in the pixel, only one phase (most often ice) is

assigned, and t andRe are retrieved using models for the

selected phase. These are used to compute liquid or ice

water path, LWP or IWP, respectively, a value that is

assumed to be equal to CWP. For low, all-liquid clouds,

the retrieval usually yields a value of LWP, which is

within 630% of microwave instrument retrievals (e.g.,

Dong et al. 2008; Painemal et al. 2012), even for broken

clouds (Painemal et al. 2016). For thin ice clouds, the

retrieval tends to slightly overestimate IWP compared

to active sensor retrievals (e.g., Mace et al. 1998, 2005).

For thick convective clouds, the determination of IWP

and CWP from any type of sensor is less certain than for

thin clouds. In comparisons with NEXRAD retrievals,

Tian et al. (2018) found that the SatCORPS IWPwas, on

average, 10% lower than the radar estimates for ice-only

anvils. However, in stratiform rain portions of the con-

vection, the IWP underestimate is 20% due to the

prevalence of larger ice crystals lower in the cloud and to

the SatCORPS optical depth retrieval limit of 150. The

limit is applied to minimize the false retrieval of very

large optical depths at lower sun angles. The SatCORPS

IWP retrievals also do not account for the presence of

the liquid water in the stratiform portions of the cloud,

so the assumption that CWP 5 IWP in these instances

produces an underestimate that will exceed 20%.

To account for this limitation of the satellite retrieval,

Smith (2014) developed a parameterization based on

combined radar,microwave radiances, and satellite imager

data to better estimate CWP. This parameterization first

computes the liquid component at the bottom of the

thick ice clouds as

LWP5 4:7t1:1 , (1)

and the ice component as

IWP
iow

5 0:305IWP1:194 . (2)

The cloud water path then is

CWP5LWP1 IWP
iow

. (3)

For comparison with the models, CWP is computed with

Eq. (3) for any pixel having an ice phase, TB107, 253K,

and t . 10.

The comparisons also employ the satellite-based CTP.

For the satellite, it is estimated by first matching the

cloud-top effective radiating temperature, which is close

to TB107 for optically thick clouds, to the lowest altitude

having that temperature in a sounding. This cloud ef-

fective altitude is assumed to be the cloud-top altitude

for water clouds. For ice clouds, the cloud-top altitude is

computed using the approaches of Minnis et al. (2008b)

andMinnis et al. (2011) for optically thick and thin clouds,

respectively. The sounding is constructed by replacing the

temperatures in the lower levels (pressure. 700hPa) of a

vertical profile from a numerical weather prediction

model with temperatures computed using a regionally

dependent apparent lapse rate as described by Sun-

Mack et al. (2014). The vertical profiles used here are

6-hourly analyses from the Goddard Earth Observing

System, version 5 (GEOS-5), model (Rienecker et al.

2008) interpolated to the time of interest.

3. Object definitions

a. Basic description

Object-based techniques (e.g., Davis et al. 2006a,b;

Ebert and Gallus 2009) provide a method for verifying

specific features within forecasts against corresponding

observations. Advantages of this approach to verifica-

tion include using object matching to avoid double

penalties associated with ‘‘close’’ forecasts (Gilleland

et al. 2009), an ability to use forecast and verification

fields derived from different data sources, and genera-

tion of extensive diagnostic information that allows

specific errors to be quantified. A primary limitation of

object-based verification is that the highly configurable

nature of object identification and matching requires

careful selection of subjective thresholds in order to

isolate features of interest in the forecast and verifica-

tion data (Wolff et al. 2014). Object-based verification is

particularly attractive for verification of NEWS-e fore-

casts as it provides a method for verifying imperfect

surrogates for convective storm hazards, such as simu-

lated satellite (e.g., Griffin et al. 2017a,b) or radar (e.g.,

Pinto et al. 2015; Cai and Dumais 2015; Skinner et al.

2018) fields, against corresponding observations.

b. Observed and model object definitions

1) RADAR REFLECTIVITY OBJECTS

The composite reflectivity fields in NEWS-e and

MRMS are used as forecast and verification datasets,
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respectively, to assess the skill of NEWS-e convective

forecasts. Synthetic reflectivity forecast objects are

identified using a fixed threshold of 45 dBZ for each

microphysics configuration considered. However, an

‘‘apples to apples’’ comparison to MRMS composite

reflectivity is not possible owing to differences in the

calculation of synthetic reflectivity within varying mi-

crophysical parameterizations as well as differences in

sampling and interpolation within the MRMS products.

Therefore, model climatologies (e.g., Sobash et al. 2016)

of NEWS-e forecasts and corresponding MRMS ob-

servations are constructed for all available real-time

cases in 2017. These climatologies allow extreme per-

centiles to be matched between MRMS observations

and NEWS-e forecasts and MRMS thresholds corre-

sponding to 45dBZ in NEWS-e forecasts to be identified

(Skinner et al. 2018). MRMS thresholds used in this

study are 39.73 (41.24) dBZ for cases using Thompson

(NVD) microphysics, respectively. The final NEWS-e

and MRMS reflectivity object fields are generated by

applying the appropriate threshold to unsmoothed

values, merging objects with a minimum (boundary)

displacement less than 12 km, and applying a size

threshold of 144 km2.

Once composite reflectivity objects have been iden-

tified in NEWS-e and MRMS data, they are matched

using a total interest score (Davis et al. 2006a) that weights

the spatiotemporal displacement between forecast

and observed objects. Specifically, the average of ratios

of the centroid and minimum displacement between

objects to a maximum allowable displacement of 40 km

is multiplied by a temporal displacement ratio with a

maximum offset of 25min to calculate the total interest

score. Objects with a total interest greater than 0.2 are

identified as matches, which corresponds to maximum

allowable spatial (temporal) offsets of 32 km (20min).

A complete description of the object identification

and matching methodology is provided in Skinner

et al. (2018).

The highly configurable nature of object identification

and matching is a limitation of object-based verification.

It is noted that object-based verification scores are

sensitive to varying threshold choices; however, quali-

tative comparisons between different cases or system

configurations remain similar [see the appendix in

Skinner et al. (2018)].

2) SATELLITE OBJECTS

Three satellite object types are defined for this re-

search and include TB107 , 225K, CTP , 225 hPa, and

CWP . 1.0 kgm22. The first two object types generally

represent the locations of cirrus clouds produced by

convection. The CWP type represents this along with

other nonconvective clouds in the domain. The CTP and

TB107 thresholds were defined by analyzing the fre-

quency histograms and determining the values below

which the peak occurrence of convective clouds exists.

This value varies from case to case and may not capture

all objects associated with low-top convection, such as

those present in the 17 May case. Using thresholds tai-

lored to a specific case will improve its individual skill

scores, but would complicate the comparison of aggre-

gate skill scores computed over all cases. For CWP, the

threshold was set to 1.0 kgm22, which represents the

approximate value separating the lowest 90% of CWP

values from the highest 10% so that thick clouds and

convection-related CWP objects are emphasized. Varying

these thresholds by 610% did not significantly impact

the overall results. Future research will refine the sat-

ellite object thresholds as more cases andmore variables

become available (e.g., tropopause height could be used

to define an adaptive CTP threshold).

Owing to the different spatiotemporal scales of radar

reflectivity and satellite objects, different matching al-

gorithms are used. Satellite objects are matched if the

minimum distance between observed and synthetic ob-

jects is less than the radius of themajor object axis for an

observed object with a maximum radius threshold of

400 km. The minimum displacement for satellite objects

is 25 km. A fixed radius is not practical for cloud objects

since their length radii can range from very small

(;10km) to very large (.500km) over the life cycle of a

single convective storm. Model objects are generated

from each member at 15-min intervals over the duration

of the forecast period for each event. For each matched

object, the object area (km2), maximum intensity, major

and minor length radii (km) are calculated. As with re-

flectivity objects, the average of ratios of the centroid

and minimum displacement between objects is multi-

plied by a temporal displacement ratio with a maximum

offset of 25min to calculate the total interest score and

those with a total interest greater than 0.2 are identified

as matches. The larger the analyzed or observed cloud,

the larger the object area should be. This matching

methodology allows matched pairs (in both reflectivity

and satellite fields) to have different sizes and intensi-

ties. The simple total interest function used for matching

only considers the centroid and minimum (boundary)

displacement in space and time.

Synthetic satellite objects are generated directly from

the postprocessed 3-km-resolution model output. Prior to

the creation of the observed satellite objects, GOES-13

TB107 and retrievals are objectively analyzed onto a 5-km

grid and the appropriate parallax corrections are applied

to cloudy pixels. An example of TB107, CWP, and CWP

objects is provided in Fig. 1, which shows the GOES-13
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FIG. 1.GOES-13 (a) infrared (10.7mm) imagery, (c) CTP, and (e) CWP at 2300 UTC 23May

with corresponding objects shown as gray regions in (b), (d), and (f).
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imager data at 2300UTC 23May for each field along with

the corresponding objects calculated using the method

described above. At this time, several areas of developing

convection are present in southeastern Texas (TX),

defined by several areas of low TB107 and high CTP. The

TB107 and CTP objects correspond well in both size and

orientation to these areas (Figs. 1a–d). For CWP, the

convective cirrus and lower-level clouds associated with

FIG. 2. (a)–(f) MRMS composite reflectivity at a selected analysis time for each case showing

severe thunderstorm (blue) and tornado (red) warnings valid at these times. Local time (central

daylight time) is UTC 2 5 h.
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developing convection act to create one large object where

two or three exist for TB107 and CTP (Figs. 1e,f). In other

cases, CWP objects associated with nonprecipitating

midlevel stratus and cumulus clouds not associated

with convection are generated (not shown).

4. Case overviews

a. Descriptions

Each May 2017 case generated numerous severe

weather warnings and corresponding reports, though

each case had unique characteristics. Figure 2 shows

MRMS composite reflectivity at a selected time for each

case, with corresponding valid severe weather warnings

overlaid. The coverage of strong convection varies from

cases to case with the greatest number of isolated su-

percells occurring on 16 and 18 May (Figs. 2b,d). These

two cases also generate themost tornado and severe hail

reports of the six being studied (Table 2). Fewer isolated

severe storms exist for 9 and 23 May and the number

of severe weather reports associated with these events

remains small. The other two cases, 17 and 27 May,

generate amore linearmode of convection, compared to

the isolated characteristics of the other cases, and also

generate large numbers of severe wind reports (Figs. 2c,e;

Table 2). For 17 May, the maximum measured re-

flectivity values are lower than the other cases with the

overall depth of the convection being lower (not shown).

Despite this, more severe weather reports are generated

on this day than any of the others.

Corresponding GOES-13 TB107 imagery at the same

time for each case highlights additional case-specific

characteristics (Fig. 3). Cold cloud tops (TB107 , 230K)

are associated with the severe convection for the 18 and

27 May cases and generate the coldest and largest cirrus

coverage, with areas of TB107, 210K present (Figs. 3d,f).

The cirrus coverage for 9 and 16 May is smaller and

corresponds to an early phase of storm development at

these times, which expands in coverage in later hours

(not shown). Finally, the 23 May and particularly the

17 May cases generate warmer cloud tops than the

other cases. This indicates shallower convection, but

the number of severe weather reports indicates that

this convection nevertheless produced extensive severe

weather.

b. Histogram analysis

Before objects can be defined, it is important to un-

derstand the distribution of observed and simulated

satellite data for each event. To visualize these distri-

butions, frequency histograms of observed and simu-

lated 10.7-mm brightness temperatures (TB107), CTP,

and CWP were created for each case. These histograms

represent an aggregate of observations and ensemble

mean analyses at 30-min intervals starting at 2000 UTC

and ending at 0230 UTC each day. Data are binned into

2-K intervals and normalized to the percent of obser-

vations or grid points present within a particular bin. For

all cases, the TB107 histogram indicates a bimodal distri-

butionwith one grouping corresponding to upper-level ice-

phase clouds (TB107 , 230K) and one corresponding

to mostly clear conditions (TB107 . 275K) (Fig. 4).

The exact distribution of both observed and simu-

lated TB107 varies from case to case and differences

between each experiment are also apparent. On 9 May,

the majority of the domain is relatively clear with most

observed and simulated TB107 results being greater than

275K. The secondary peak (TB107, 225K) corresponds

to the cirrus clouds generated from convection, which

have a much smaller areal coverage (Fig. 3a). Overall,

the observations and simulated model data agree,

but one important difference is present. Note that the

NVD-RLT experiment generates more and colder

TB107 values compared to observations or the other

experiments. Similar results were present for 16 May

except that the domain was more evenly balanced be-

tween convection and clear-sky areas (Fig. 4b). The

largest differences between the observations and model

output occurs on 17 May, with all experiments greatly

overestimating the distribution of cold (TB107 , 230K)

cloud tops relative to the observations while under-

estimating clear-sky areas (Fig. 4c). The NVD-RLT ex-

periment is by far the worst performer, with both

THOMP and NVD-MOD generating somewhat warmer

clouds and over a larger temperature range. The 18 May

case is dominated by very large convective cirrus which

covers over 80% of the domain by 2300 UTC (Figs. 3c and

4d). Note that TB107 is colder than the previous cases, in-

dicating deeper convection and higher cirrus and anvil

clouds. As before, NVD-RLT has a cold bias compared to

observations and the other experiments. The 23 May case

shares many of the characteristics of 9 May except for a

drop in TB107 between 285 and 295K in simulated data

TABLE 2. Numbers of tornado, severe hail (diameter . 1.0 in.),

and high-wind reports associated for each case between 1800 and

0500 UTC the following day within the model domain.

Date Tornadoes Hail Wind

9 May 2 12 1

16 May 20 67 3

17 May 11 40 160

18 May 15 86 29

23 May 0 12 8

27 May 8 71 92
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that are not present in the observations (Fig. 4e). This is

attributable to a bias in the CRTM-derived TB107 over

the Gulf of Mexico. The 27 May case is similar to the

16 May case except that cloudy TB107 is somewhat

colder (Fig. 4f). Overall, it is clear that NVD-RLT

generates simulated deep-convective TB107 values that

are both too cold and present over a larger area com-

pared to the observations and other experiments.

Similar patterns are present in the CTP histograms

with NVD-RLT generating higher clouds (lower CTP)

for several cases (Fig. 5). CTP is binned into 25-hPa

intervals and clear-sky areas (CTP 5 null) are not

FIG. 3. (a)–(f)GOES-13 infrared (10.7mm) imagery for each case corresponding to the times in

Fig. 2. Local time (central daylight time) is UTC 2 5 h.
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included in the normalized percentages. Model differ-

ences are particularly evident for 16, 17, 18, and 27 May.

Experiments that generate higher cloud tops are also

those that generate the colder TB107. For higher clouds

below the tropopause, the surrounding environment

would be colder, corresponding to the colder clouds

observed and simulated by the model. In the case of

nonconvective clouds with lower cloud tops, some dif-

ferences exist between the retrievals and simulated CTP

distributions. For the 9 and 23 May cases, the simulated

nonconvective clouds have a peak coverage roughly

50 hPa below the observed values. Some of the bias may

be due to observational error since the differences are

within the range of the observational and model un-

certainties. Changes to the cloud microphysics did not

impact the height distribution for these low-level clouds,

but in the case of NVD-MOD, they did increase their

coverage for 9 and 16 May (Figs. 5a,b).

Finally, CWP histograms in Fig. 6 differ significantly

fromTB107 and CTP due to characteristics specific to the

FIG. 4. (a)–(f) Frequency histogram ofGOES-13 and ensemblemean simulated TB107 aggregated over analysis times between 2000 and

0230 UTC at 30-min intervals for each case. Colder TB107 values indicate cirrus outflow from convection, and warm TB107 indicates clear-

sky areas. Vertical lines indicate the standard deviation of TB107 over all ensemble members for each bin.
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calculation of the cloud water path as noted earlier.

Specifically, the value of CWP is generally not sensitive

to height, so the microphysics dependencies observed

for CTP and TB107 are often not present. The occurrence

of CWP is greatest for very small values (,0.5kgm22) and

rapidly decreases thereafter. All experiments generate

similar distributions for CWP . 2.0kgm22 while differ-

ences for larger CWP values are very small (,0.1%).

However, the observed CWP distribution differs signifi-

cantly from the model analyses in several cases. For all

cases except 18May, the coverage of CWP, 2kgm22 is

greater in the model output compared to the observations.

The 16, 18, and 27 May experiments generate lower

occurrences of CWP . 2.0 kgm22 compared to the

retrievals with the caveat that for 18 May the occur-

rence of retrieved CWP reaches zero near CWP 5
5 kgm22. This is not unexpected since the CWP

algorithm retrieval is constrained to t # 150, corre-

sponding to moderate-to-heavy precipitation, so that,

even with the parameterized correction of LWP, it

peaks between 3 and 5 kgm22 depending on the at-

mospheric conditions and the retrieved value of Re.

The maximum values vary from 4 to 6 kgm22. The

model-simulated CWP does not have this limitation

FIG. 5. As in Fig. 4, but for CTP (hPa).
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and can generate values in excess of 20 kgm22 in small

areas near convective cores.

5. Object verification

a. Example forecasts

To visualize the impact of applying different cloud

microphysics schemes to modeled cloud properties, two

analysis examples are provided. At 2300 UTC 9 May,

simulated ensemble mean TB107 indicates several ex-

isting and developing storms in eastern New Mexico

(NM) and western TX (Fig. 7). Compared to the ob-

served TB107 at this time (Fig. 2a), all experiments

overestimate the cirrus cloud coverage, with NVD-RLT

generating the largest overestimate. For example, NVD-

RLT generates a large area of TB107 , 225K in north-

west TX associated with the supercell in northeastern

NM, while the eastern extent of the cirrus in THOMP

and NVD-MOD is significantly less (Figs. 7a–c). Calcu-

lating the difference (THOMP 2 NVD-RLT and NVD-

MOD 2 NVD-RLT) in TB107 shows that both THOMP

and NVD-MOD generate much higher (warmer) TB107

FIG. 6. As in Fig. 4, but for CWP (kgm22). Note that the y axis is on a logarithmic scale to highlight small differences inmodel distributions

for CWP . 1.0 kgm22.
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FIG. 7. Ensemble mean simulated (a)–(c) TB107, (d)–(f) CTP, and (g)–(i) CWP at 2300 UTC 9 May for the (left) NVD-RLT, (center)

THOMP, and (right) NVD-MOD experiments. Note the greater coverage of TB107 , 220K and CTP , 225 hPa in the NVD-RLT

experiment compared to the others.
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FIG. 8. Differences in (a),(b) TB107, (c),(d) CTP, and (e),(f) CWP between (left) NVD-RLT

and THOMP and (right) NVD-RLT and NVD-MOD at 2300 UTC 9 May. For TB107, red

colors indicate that either THOMP or NVD-MOD generates warmer TB107 than NVD-RLT,

indicating less cloud cover. Blue colors indicate the opposite. CTP is similar except that gray

colors indicate where NVD-RLT generates CTP retrievals where none are present in either

THOMP or NVD-MOD.
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FIG. 9. As in Fig. 7, but at 2200 UTC 16 May.
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values than NVD-RLT ahead of the ongoing con-

vection indicating the cirrus shield generated by

THOMP and NVD-MOD is much smaller (Figs. 8a,b).

Other differences exist where all experiments gener-

ate cloud cover, but the differences are more random

in nature.

Differences in ensemble mean CTP are similar, with

NVD-RLT generating the highest cloud tops among all

of the experiments at this time (Figs. 7d–f and 8c,d). The

overprediction bias of NVD-RLT over THOMP and

NVD-MOD is further illustrated by the gray regions in

Figs. 8c and 8d, which denote areas where either

FIG. 10. As in Fig. 8, but at 2200 UTC 16 May.
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THOMP or NVD-MOD did not generate clouds and

NVD-RLT did, precluding the calculation of a differ-

ence in CTP. Other differences are present around the

edges of the nonconvective cloud field present overmost

of TX. Inside this region, CTP associated with low-level

(CTP , 700 hPa) clouds exhibits much smaller varia-

tions between experiments compared to the higher-level

clouds associated with convection.

Finally, differences in CWP between each experiment

are generally smaller and more isolated in nature.

However, the decrease in the eastward extent of

CWP , 0.1 kgm22 for THOMP and NVD-MOD is

evident (Figs. 9g–i and 10e,f).

Similar impacts from changing cloud microphysics

schemes were observed for the 16May case at 2200UTC

(Figs. 9 and 10). The NVD-RLT experiment generates

the coldest TB107 values and largest areal coverage of

TB107 , 225K compared to either the THOMP or

NVD-MOD experiments (Figs. 9a–c). The latter two

experiments still show separation in the cirrus clouds

from the southern and northern storm complexes pres-

ent in the observations while it is almost completely

gone in NVD-RLT. Difference plots show the large

areas of warmer TB107 being generated by THOMP

and NVD-MOD east of the developing convection

compared to NVD-RLT (Figs. 9a–c and 10a,b). The

THOMP simulation also generates an area of colder

TB107 in southeastern Oklahoma (OK) owing to anom-

alous convection being developed by the model, which

is not generated in either NVD experiment. Similar

patterns are evident when comparing CTP, with

THOMP generating larger differences in the low-level

cloud field in eastern OK compared to NVD-MOD

(Figs. 9d–f and 10c,d). Finally, differences in CWP were

FIG. 11. EnsemblemeanCSI as a function of forecast time averaged over all forecasts for each case for TB107. The

blue color represents NVD-RLT, red represents THOMP, and green represents NVD-MOD. Vertical lines in-

dicate standard deviations of CSI calculated among all forecast members.
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generally smaller overall with larger values confined to

areas near convection (Figs. 9g–i and 10e,f).

It is clear from both examples that NVD-RLT over-

estimates cirrus cloud coverage and cloud height com-

pared to observations while the other two experiments

are qualitatively closer to reality. These comparisons are

consistent with the frequency histograms shown for

these cases where the distribution of both TB107 and

CTP from NVD-RLT peaks left of the observed and

values from the other experiments.

b. Individual case comparisons

Qualitatively, both THOMP and NVD-MOD gen-

erate more-realistic cirrus cloud characteristics than

FIG. 12. Performance diagram for (a)–(c) TB107, (d)–(f) CTP, and (g)–(i) CWP for each experiment and case for 60-min forecasts. Each

case is shown as a different color. Large dots indicate ensemble mean performances while smaller dots indicate individual member

performances. In these diagrams, minimum skill is located in the bottom left, with skill maximized in the top right. For a perfect score,

POD 5 1 and success ratio 5 1. Curved blue lines represent CSI, and diagonal gray lines represent bias.
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NVD-RLT, but these differences must be quantified

before any final conclusions can be drawn. As a result,

object-based skill scores in the form of the critical suc-

cess index (CSI) were computed for TB107, CTP, and

CWP. CSI scores are calculated by aggregating contin-

gency table elements of hits (matched object pairs), false

alarms (unmatched NEWS-e objects), and misses (un-

matched GOES-13 objects) across all forecasts for each

case. The ratio of hits to the sum of hits, false alarms, and

misses is then calculated for each available forecast time

(Fig. 11). CSIs vary from experiment to experiment,

with 18 May having the highest and 9 and 17 May being

the lowest. CSI generally decreases as a function of

forecast time in all cases except 18 May. This event was

associated with a small number of very large cloud ob-

jects at later forecast times, resulting in very high POD

values compared to the other experiments (not shown).

Overall, CSI is generally related to the convective

mode of the individual event with those associated

with intense, isolated supercells performing best. CSI

varies substantially as a function of experiment with

NVD-RLT generally performing the worst and either

THOMP or NVD-MOD performing the best. Some

overlap between members of each experiment exists,

but most members lie outside the spread envelope of the

other experiments at least out to the 2-h (120min)

forecast time. To better visualize the overall perfor-

mance at a specific forecast time (60min), performance

diagrams (Roebber 2009) relating probability of de-

tection (POD), false alarm ratio (FAR), CSI, and fre-

quency bias are generated (Skinner et al. 2018). More

skillful forecasts are located in the top right of the

diagram and less skillful forecasts to the bottom left.

Figure 12 shows performance diagrams generated for

each case and experiment. Significant spread exists be-

tween each case with ensemblemean POD ranging from

near 1.0 for the 18 May case to as low as 0.1 on 17 May

(Fig. 12a). Due to the relatively high FAR values, the

FIG. 13. As in Fig. 11, but for CTP objects.
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success ratio is generally below 0.5. Skill scores are im-

proved in both THOMP and NVD-MOD, with much of

the improvement coming from an increase in POD and

somewhat smaller decreases in FAR. All cases show at

least some improvement in THOMP and NVD-MOD

compared to NVD-RLT, with the largest improvements

in the 17 and 23 May cases (Figs. 12b,c).

Similar impacts on forecast skill were observed for CTP

(Fig. 13). Overall, CSI values were generally lower than the

TB107 values, which is largely attributable to an increase in

FAR from smaller CTP objects. NVD-MOD outperforms

NVD-RLT for all cases except for the 18 May case where

the skill is somewhat reduced at all forecast times (Fig. 13c).

This event has the fewest CTPobjects of all of the cases and

is more sensitive to smaller differences in object matches

versus false alarms (Table 3). Closer inspection of these

cases showed that a few large CTP objects classified as

matches in NVD-RLTwere classified as false alarms in the

other experiments due to the distance threshold being ex-

ceeded by a small amount. Corresponding 1-h forecast

performance diagrams also show the greatest improvement

associated with the 16 and 23May events (Figs. 12d–f). The

very low overall skill for the 17 May case is a result of low

POD values resulting from the choice of TB107 and CTP

thresholds used in object classification. Tuning the thresh-

olds for this case does improve its skill scores, but at the

expense of degrading the scores for the other cases. Skill is

slightly reduced by THOMPandNVD-MOD compared to

NVD-RLT for the 18 May event, as noted above.

Finally, the results from comparing CSI for CWP are

somewhat different than those for TB107 and CTP. For

most cases, the differences in CSI are small when com-

paring each experiment, and do not change significantly

as a function of time (Fig. 14). CSIs from ensemble mem-

bers associated with each experiment often overlap with

those from the other experiments. Performance diagrams

for 1-h forecasts show similar results (Figs. 12g–i), with

only small differences between different cloud micro-

physics schemes, which is consistent with the qualita-

tive examples shown above (Figs. 8 and 10).

c. Combined case summary

Skill scores were aggregated across the entire sample

of cases to assess bulk differences in forecast skill.

Figure 15 shows performance diagrams for IR, CTP, and

CWP objects at t5 60, 120, and 180min. Both THOMP

and NVD-MOD increase in CSI and POD with de-

creasing FAR compared to NVD-RLT for the first 2 h of

the forecast period. Bias does increase in THOMP and

NVD-MOD, corresponding to an increase in the total

number of forecast objects from 39 674 in NVD-RLT to

47 054 and 46 692 in THOMP and NVD-MOD, re-

spectively, at t 5 60min (Table 3). At this forecast time,

both THOMP and NVD-MOD have an ensemble mean

skill close to 0.3, compared to 0.2 on NVD-RLT. It is also

apparent from this plot that much of the improvement is

due to an increase in POD. Corresponding skill scores for

CTP are similar, with the improvement of THOMP and

NVD-MOD over NVD-RLT extending until the end of

the 180-min (3h) forecast (Figs. 15c–f). The performance

diagram for CTP at the 60-min forecast time is also similar

to the one for TB107, with NVD-MOD being the best

performer. Finally, skill scores for CWP are similar be-

tween all experiments for all forecast times (Figs. 15g–i).

Much of the improvement in skill arises from the re-

duction in object size in THOMP and NVD-MOD

compared to NVD-RLT. These smaller object sizes

TABLE 3. Observed and simulated forecast satellite objects for

each case. The number of model objects represents a total from all

ensemble members.

Event IR CTP CWP REFL

9 May

Observations 209 637 365 1535

NVD-RLT 7120 9016 11 890 27 700

THOMP 7574 8966 10 777 34 270

NVD-MOD 6958 8916 10 513 30 839

16 May

Observations 387 623 607 2673

NVD-RLT 6985 7897 12 644 35 924

THOMP 8175 9606 13 544 41 058

NVD-MOD 7163 9429 12 402 44 262

17 May

Observations 110 314 261 2590

NVD-RLT 7643 11 635 14 224 54 413

THOMP 11 977 13 033 13 319 69 183

NVD-MOD 13 257 12 682 13 559 57 598

18 May

Observations 124 293 352 4571

NVD-RLT 5002 4353 8402 91 244

THOMP 4441 6835 7853 105 297

NVD-MOD 4468 7097 9014 103 287

23 May

Observations 330 436 283 1479

NVD-RLT 8755 15 101 12 087 31 486

THOMP 10 053 12 669 11 013 36 998

NVD-MOD 9773 11 957 12 142 33 405

27 May

Observations 297 473 464 2489

NVD-RLT 4169 5906 6379 36 312

THOMP 4834 8363 6465 51 236

NVD-MOD 5073 10 316 7130 48 188

Total

Observations 1457 2776 2332 15 337

NVD-RLT 39 674 53 908 65 626 277 079

THOMP 45 054 59 472 62 971 338 042

NVD-MOD 46 692 60 397 64 760 317 579

DECEMBER 2018 JONE S ET AL . 1701

D
ow

nloaded from
 http://journals.am

etsoc.org/w
af/article-pdf/33/6/1681/4667790/w

af-d-18-0112_1.pdf by N
O

AA C
entral Library user on 11 August 2020



better reflect the observed objects present in theGOES-

13 imagery. To illustrate these differences, Fig. 16 shows

the median object area for TB107, CTP, and CWP as a

function of forecast time for the six-case sample split into

matched and false alarm objects. For TB107 and CTP,

matched objects are generally far larger than false alarm

objects, indicating that the smallest objects in the model are

not being matched to observations (Fig. 16a). Conversely,

many of the larger objects are matched, resulting in much

higher median area values (Fig. 16b). The NVD-RLT ex-

periment produces the largest TB107 and CTP matched

objects while those generated byTHOMPandNVD-MOD

are much smaller. Similar patterns are present for false

alarm objects where NVD-RLT generates larger median

values. Finally, there is somewhat less variability in CWP

object size between experiments though NVD-MOD gen-

erally produces the smallest median values (Fig. 16c). As

with TB107 and CTP, false alarm objects are smaller than

matched objects. The very large satellite object sizes

generated by NVD-RLT are consistent with qualitative

observations made during the 2017 HWT experiment,

which provided the initial motivation for this work.

d. Reflectivity object skill

While the modifications to the NVD microphysics had a

substantial positive impactwhen comparing satellite objects,

it is also important to verify that these changes did not ad-

versely impact the reflectivity skill given its importance in

severe weather forecasting. Performance diagrams for t 5
60, 120, and 150min forecasts show that overall the skill

(CSI) is similar for all experiments (Fig. 17). Note that 180-

min performance diagrams are not shown since reflectivity

uses a620-minwindow for objectmatching, which prevents

full statistics from being computed after the 160-min fore-

cast. For all forecast times, NVD-RLT generates the lowest

POD, but with the advantage of also producing a lowest

FAR (high success ratio). The THOMP and NVD-RLT

experiments generate somewhat higher POD and FAR

FIG. 14. As in Fig. 11, but for CWP objects.
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values. As a result, the ensemble mean CSI changes little

from case to case. By the 150-min forecast, individual

member skill levels from all experiments overlap one an-

other, indicating that the differences in reflectivity fore-

casts by this time are negligible. Thus, the impact of the

microphysics modifications, which are large for cloud

properties, do not have a negative impact on reflectivity

forecasts, which is important for high-impact weather

forecasts. Verification against other parameters such as

2–5-km updraft helicity was also conducted and while

NVD-MOD performed somewhat worse than NVD-

RLT, out 90min, it was very similar afterward with the

overall skill difference being small (not shown).

6. Conclusions

Object-based verification of simulated satellite prod-

ucts against GOES-13 observations showed that the

FIG. 15. As in Fig. 12, but showing the performance of all cases for each experiment at (left) 60-, (center) 120-, and (right) 180-min forecast

times for (a)–(c) TB107, (d)–(f) CTP, and (g)–(i) CWP.
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choice of the cloud microphysics scheme used within the

model can have a large impact on the skill of these

products. The model configuration employed during the

2017 HWT used the NVD double-moment cloud mi-

crophysics scheme developed byNSSL, which generated

upper-level clouds that often had a much greater areal

coverage than those present in observations. Since the

NVD scheme had never been validated using satellite

data until this point, this large cloud bias had gone un-

noticed. Comparisons of the real-time configuration

with an identical configuration, but now using the

Thompson microphysics scheme, showed that the latter

generated more realistic upper-level cloud coverage.

Thus, an effort was made to modify the NVD scheme to

FIG. 16. Ensemble mean (left) matched and (right) false alarm object size as a function of forecast time for (a),(b) TB107, (c),(d) CTP,

and (e),(f) CWP objects averaged over all cases for each experiment. Vertical lines indicate the standard deviation of CSI calculated

among all forecast members.
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improve the upper-level cloud properties while main-

taining skill levels for precipitation. The modified NVD

scheme was consistently more skillful when comparing

TB107 and CTP against observations, while only a mar-

ginal improvement was observed for CWP. While both

TB107 and CTP are essentially measures of cloud-top

characteristics, it is noteworthy that both a raw radi-

ances and cloud-top retrievals give similar results. Cor-

responding object-based radar reflectivity skill was

similar between NVD-RLT and NVD-MOD experi-

ments, indicating that the much larger changes to the

upper-level cloud properties did not have any adverse

impacts on the forecast reflectivity and precipitation.

The improvement in simulated TB107 and CTP skill

occurs primarily through a reduction in object size made

possible by the changes to the fall speed and collection

efficiency variables. When assimilating cloudy observa-

tions, especially cloudy radiances, correctly analyzing the

location and extent of the cloud cover is important since a

drasticmischaracterization of cloud cover in themodelwill

limit the impact of assimilating true observations, poten-

tially reducing the overallmodel skill. This work has shown

that modest adjustments to cloud microphysics scheme

parameters can make a nontrivial difference and that both

cloud and precipitation features should be considered

when validating future adjustments to advance cloud mi-

crophysics schemes. Ongoing research will analyze the

impact of microphysics changes on other variables, such as

strong winds and accumulated precipitation using similar

object-based verification approaches.

Continued object-based satellite verification will con-

tinue with the 2018 and future versions of the NEWS-e in

order to test how future changes to themodel configuration

impact the cloud analysis and to make modifications as

necessary.By verifying against both satellite and radar data,

we can tune the model configuration so that both the cloud

andprecipitationfields benefit.Higher spatial and temporal

resolution data fromGOES-16 andGOES-17 will be used

as truth data and should enable even better assessment of

NEWS-e skill, especially as it transitions to a higher hori-

zontal resolution in the near future. Also, the increased

spectral resolution from the additional infrared channelwill

allow for more accurate retrievals of cloud properties and

improved sampling of the near-storm environment.
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